Novel Hydrosilylation of Butadiene catalysed by a Palladium Complex

By S. TAKAHASHI*, T. SHIBANO, and N. HAGIHARA

(The Institute of Scientific and Industrial Research, Osaka University, Suita, Osaka 565, Japan)

LOW-VALENT PALLADIUM COMPLEXES catalyse the linear dimerization of butadiene.¹ We now report the reaction of butadiene with silanes in the presence of palladium complex catalysts.

Low-valent palladium-phosphine complexes catalyse a novel hydrosilation of butadiene on addition of silicon hydrides to butadiene dimer. Dried butadiene (6.5 g.), trimethylsilane (6.4 g.), benzene (20 ml.), and bis(triphenylphosphine)(maleic anhydride)palladium (219 mg.)² (85°, 4.5 hr.) gave a single, easily separable product (g.l.c.), (I) (98%, colourless liquid, b.p. $125-127^{\circ}/95$ mm., $n_{\rm D}^{20}$ 1.4543), a 1:2 trimethylsilane-butadiene adduct (elemental analysis and molecular weight). The proposed structure,

$$2 CH_{2}=CH \cdot CH=CH_{2} + R_{3}SiH \rightarrow$$

$$R_{3}Si-CH_{2} \cdot CH=CH \cdot CH_{2} \cdot CH_{2} \cdot CH=CH \cdot CH_{3}$$
(I) R=Me (II) R=Et

1-trimethylsilylocta-2,6-diene, completely satisfied all the spectroscopic observations: i.r., $\nu_{C=C}$ 1655 cm.⁻¹; δ_{Si-Me} 1247 cm⁻¹, no band attributed to the terminal vinyl group; n.m.r. τ 4.5-4.9 (-CH=); 7.8-8.1 (=C-CH₂- $CH_2-C=$; 8·38 (d, J = 5 c./sec., $CH_3-C=$); 8·5–8·7 (Si- $CH_2-C=$); 9·98 (s, Si- CH_3); ratio 4:4:3:2:9.

Bis(triphenylphosphine)(p-benzoquinone)palladium² was also found to be effective, but tetrakis(triphenylphosphine)palladium³ and -platinum⁴ were much less effective.

Butadiene with triethylsilane gave selectively also

triethylsilylocta-2,6-diene [(II), b.p. 107-110°/4 mm. $n_{\rm D}^{90}$ 1.4690), 84%], but trichlorosilane and dimethylphenylsilane gave only the normal hydrosilylation products (butadiene-silane 1:1 adducts).

	De	pendence	of	vield	of	(I)	on	reaction	temperatur	'e
--	----	----------	----	-------	----	-----	----	----------	------------	----

Solvent	Temp.	Time (hr.)	Yield of (I)
C ₆ H ₆	65°	$5 \cdot 0$	85%
C ₆ H ₆	85	4.5	98
C ₆ H ₆	110	6.5	74
THÝ	85	4.5	96

It is $known^5$ that the metal complexes catalyse the hydrosilylation of olefins, dienes, and acetylenes. The palladium catalysts give the 1:2 adduct silane-butadiene to the complete exclusion of the 1:1 adduct; the reaction is thought to proceed by a mechanism different from that proposed¹ for the dimerization of butadiene with alcohols, since the former gave selectively octa-2,6-diene derivatives, while the latter gave octa-2,7-diene derivatives. The complex Pt(Ph₃P)₄ reacts⁶ with silicon hydrides to form the hydride complexes, PtH(SiR₃)(Ph₃P)₂. This suggests that the novel hydrosilylation of butadiene catalyzed by the palladium complex proceeds through a palladium hydride intermediate, by insertion of butadiene into the palladium-hydrogen bond.

(Received, November 18th, 1968; Com. 1558.)

¹S. Takahashi, T. Shibano, and N. Hagihara, Bull. Chem. Soc. Japan, 1968, 41, 454; S. Takahashi, H. Yamazaki, and N. Hagihara, ¹ Janamashi, T. Shibaho, and K. Taginard, Date. Com. Soc. 1940, 1968, 41, 454, 5. F.
² S. Takahashi and N. Hagihara, J. Chem. Soc. Japan, 1967, 88, 1306.
³ L. Malatesta and M. Angoletta, J. Chem. Soc., 1957, 1186.
⁴ L. Malatesta and C. Cariello, J. Chem. Soc., 1958, 2323.
⁵ See, for example, J. F. Harrod, and A. J. Chalk, J. Amer. Chem. Soc., 1965, 87, 1133.
⁶ L. Chett, C. Fahora, and R. W. Vararamatallia Chem. 1068, 12, 21

- ⁶ J. Chatt, C. Eaborn, and P. N. Kapoor, J. Organometallic Chem., 1968, 13, 21.